Understanding trends in electrochemical carbon dioxide reduction rates
نویسندگان
چکیده
Electrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. We develop scaling relations relating transition state energies to the carbon monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.
منابع مشابه
Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles.
Highly efficient and selective electrochemical reduction of carbon dioxide represents one of the biggest scientific challenges in artificial photosynthesis, where carbon dioxide and water are converted into chemical fuels from solar energy. However, our fundamental understanding of the reaction is still limited and we do not have the capability to design an outstanding catalyst with great activ...
متن کاملElectrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies
Isotopic labeling experiments were performed to better understand the electrochemical reduction of carbon dioxide on nitrogen-doped porous carbon electrodes. By using nonequilibrated solutions of selectively labeled initial carbon sources (i.e., 13CO2 and H13CO3-), bicarbonate anion was identified as the predominant source of the carbon monoxide reduction product.
متن کاملMolecular approaches to the electrochemical reduction of carbon dioxide.
This article reviews recent progress in the exploitation of carbon dioxide as a chemical feedstock. In particular, the design and development of molecular complexes that can act as catalysts for the electrochemical reduction of CO(2) is highlighted, and compared to other biological, metal- and non-metal-based systems.
متن کاملCore–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol
Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...
متن کاملPreparation of Gd2O3 nanoparticles from a new precursor and their catalytic activity for electrochemical reduction of CO2 to CO
The mononuclear Gd(III) complex, [Gd(L)3(H2O)5] (where L is alizarin yellow R (NaC13H8N3O5)), has been prepared in H2O under reflux condition. The Gd(III) complex has been characterized by elemental analysis and spectroscopic methods (UV–Vis and FT–IR). The Gd2O3 nanoparticles were prepared by the calcination of the Gd(III) complex in air at different temperatures up to 600 °C for 2 h. The calc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017